Integrals of $x^{\left(x^{n}\right)}$ and $x^{-\left(x^{n}\right)}$ from 0 to 1

By Ng Tze Beng

The integral of the function x^{x} from 0 to 1 does not have a closed form.
Likewise, the integral of the function x^{-x} from 0 to 1 does not have a closed form. They can be expressed as convergent series.

The function x^{x}

Observe that x^{x} is not defined at $x=0$. For $x>0$, we define x^{x} via the exponential function by $x^{x}=\exp (x \ln (x))=e^{x \ln (x)}$. Now, using L' Hôpital's Rule, $\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}(-x)=0$. Define $f(x)=\left\{\begin{array}{ll}x \ln (x), & x>0, \\ 0, & x=0\end{array}\right.$ on the closed interval $[0,1]$. Then f is continuous on $[0,1]$.

Note that $f(x) \leq 0$ for x in $[0,1]$. Moreover, $f^{\prime}(x)=\ln (x)+1$ for $x>0$. Hence, $f^{\prime}(x)=0$ in $(0,1]$ if, and only if, $x=e^{-1}$. Therefore, $f^{\prime}(x)<0$ for $x \in\left(0, e^{-1}\right)$ and $f^{\prime}(x)>0$ for $x \in\left(e^{-1}, 1\right]$. Consequently, $f(x)$ is decreasing on $\left[0, e^{-1}\right]$ and increasing on $\left[e^{-1}, 1\right]$. Hence, the function f has an absolute minimum value of $-e^{-1}$ on $[0,1]$ and a maximum value of 0 at 0 and 1 . Let $g(x)=e^{f(x)}$ for $x \in[0,1]$. Then $g(x)$ is a continuous function on $[0,1]$, since it is a composite of two continuous functions. Thus, by x^{x} for $x \in[0,1]$, we mean $g(x)$. Hence, x^{x} is Riemann integrable on $[0,1]$ and $\int_{0}^{1} x^{x} d x=\int_{0}^{1} g(x) d x=\int_{0}^{1} e^{f(x)} d x$. Note that $e^{\left(-e^{-1}\right)} \leq g(x) \leq 1$ for $x \in[0,1]$.

We can use the power series expansion of the exponential function to express $g(x)$ too.

$$
g(x)=1+\sum_{n=1}^{\infty} \frac{(f(x))^{n}}{n!} .
$$

Let $g_{n}(x)=1+\sum_{k=1}^{n} \frac{(f(x))^{k}}{k!}$ for integer $n \geq 1$. Then $g_{n}(x)$ converges pointwise to $g(x)$ on $[0,1]$.

Moreover, $\left|g_{n}(x)\right| \leq 1+\sum_{k=1}^{n} \frac{(-f(x))^{k}}{k!} \leq 1+\sum_{k=1}^{n} \frac{\left(e^{-1}\right)^{k}}{k!} \leq 1+\sum_{k=1}^{\infty} \frac{1}{k!}=e$. This means that the sequence of functions $\left(g_{n}(x)\right)$ is uniformly bounded on $[0,1]$. Therefore, by the Arzelà's Dominated Convergence Theorem,

$$
\int_{0}^{1} g_{n}(x) d x=1+\sum_{k=1}^{n} \int_{0}^{1} \frac{(f(x))^{k}}{k!} d x \rightarrow \int_{0}^{1} g(x) d x .
$$

We may also invoke the fact that the series $1+\sum_{n=1}^{\infty} \frac{(f(x))^{n}}{n!}$ is uniformly convergent so that we can integrate the series term by term. Note that for all x in $[0,1],\left|\frac{(f(x))^{n}}{n!}\right| \leq \frac{1}{n!}$ for $n>1$ and $1+\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent. It follows by Weierstrass M test that $1+\sum_{n=1}^{\infty} \frac{(f(x))^{n}}{n!}$ is uniformly convergent on [0, 1] to the function g. As $\frac{(f(x))^{n}}{n!}$ is Riemann integrable for all $n \geq 1$, we can integrate $g(x)$ term by term. Next, we consider the integral $\int_{0}^{1}(f(x))^{k} d x$ •

The Integral $\int_{0}^{1}(f(x))^{k} d x$.
We claim that $\int_{0}^{1}(f(x))^{k} d x=(-1)^{k} \frac{k!}{(k+1)^{k+1}}$.
$\int_{t}^{1}(f(x))^{k} d x=\int_{t}^{1} x^{k}(\ln (x))^{k} d x$. Let $u=-(k+1) \ln (x)$. Then $x=e^{-\frac{1}{k+1} u}$ and $\frac{d u}{d x}=-(k+1) \frac{1}{x}$. Thus, applying a change of variable, we get

$$
\begin{gather*}
\int_{t}^{1}(f(x))^{k} d x=\int_{t}^{1} x^{k}(\ln (x))^{k} d x=-\int_{-(k+1) \ln (t)}^{0} e^{-u}(-1)^{k} \frac{1}{(k+1)^{k+1}} u^{k} d u \\
=(-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{-(k+1) \ln (t)} e^{-u} u^{k} d u . \\
\int_{0}^{1}(f(x))^{k} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1}(f(x))^{k} d x=\lim _{t \rightarrow 0^{+}}(-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{-(k+1) \ln (t)} e^{-u} u^{k} d u \\
=(-1)^{k} \frac{1}{(k+1)^{k+1}} \lim _{s \rightarrow \infty} \int_{0}^{s} e^{-u} u^{k} d u=(-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{\infty} e^{-u} u^{k} d u \tag{1}
\end{gather*}
$$

Now we claim that $I_{k}=\int_{0}^{\infty} e^{-u} u^{k} d u=k!$.
Note that $I_{1}=\int_{0}^{\infty} e^{-u} u d u=\lim _{s \rightarrow \infty} \int_{0}^{s} e^{-u} u d u=\lim _{s \rightarrow \infty}\left[-e^{-u} u\right]_{0}^{s}+\lim _{s \rightarrow \infty} \int_{0}^{s} e^{-u} d u$

$$
=0+\lim _{s \rightarrow \infty}\left[-e^{-u}\right]_{0}^{s}=1 .
$$

For $k>1, \quad I_{k}=\int_{0}^{\infty} e^{-u} u^{k} d u=\lim _{s \rightarrow \infty} \int_{0}^{s} e^{-u} u^{k} d u=\lim _{s \rightarrow \infty}\left[-e^{-u} u^{k}\right]_{0}^{s}+\lim _{s \rightarrow \infty} k \int_{0}^{s} e^{-u} u^{k-1} d u$

$$
=-\lim _{s \rightarrow \infty} e^{-s} s+k I_{k-1}=0+k I_{k-1}=k I_{k-1} .
$$

It follows that $I_{k}=k I_{k-1}=k(k-1) I_{k-2}=\cdots=k!I_{1}=k!$. Following (1) we get,

$$
\int_{0}^{1}(f(x))^{k} d x=(-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{\infty} e^{-u} u^{k} d u=(-1)^{k} \frac{k!}{(k+1)^{k+1}}
$$

Therefore,

$$
\int_{0}^{1} x^{x} d x=\int_{0}^{1} g(x) d x=\int_{0}^{1} e^{f(x)} d x=1+\sum_{k=1}^{\infty} \int_{0}^{1} \frac{(f(x))^{k}}{k!} d x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(k+1)^{k+1}} .
$$

Similarly,

$$
\int_{0}^{1} x^{-x} d x=\int_{0}^{1} e^{-f(x)} d x=1+\sum_{k=1}^{\infty} \int_{0}^{1} \frac{(-f(x))^{k}}{k!} d x=\sum_{k=0}^{\infty} \frac{1}{(k+1)^{k+1}} .
$$

This completes the derivation of the stated integrals.
Indeed, if a function $f(x)$ is Riemann integrable on the interval $[a, b]$, then it is bounded on $[a, b]$ and the function $e^{f(x)}$ is Riemann integrable on $[a, b]$. We may by the Arzelà's Dominated Convergence Theorem, integrate $e^{f(x)}$ on $[a, b]$ by term-by-term integration on the series expansion of $e^{f(x)}=1+\sum_{n=1}^{\infty} \frac{(f(x))^{n}}{n!}$ since the series is uniformly bounded by e^{M}, where $M=\max \{|f(x)|: x \in[a, b]\}$. That is,

$$
\int_{a}^{b} e^{f(x)} d x=\sum_{k=0}^{\infty} \int_{a}^{b} \frac{(f(x))^{k}}{k!} d x
$$

Using the same approach, we can show that $\int_{0}^{1} x^{\left(x^{n}\right)} d x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(n k+1)^{k+1}}$ and $\int_{0}^{1} x^{-\left(x^{n}\right)} d x=\sum_{k=0}^{\infty} \frac{1}{(n k+1)^{k+1}}$.

