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The integral of the function xx from 0 to 1 does not have a closed form.  

Likewise, the integral of the function x−x from 0 to 1 does not have a closed 

form.  They can be expressed as convergent series.   

The function xx 

Observe that xx is not defined at x = 0.  For x > 0, we define xx via the 

exponential function by ln( )exp( ln( ))x x xx x x e= = .  Now, using L' Hôpital's Rule,
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closed interval [0, 1].   Then f is continuous on [0, 1].    

Note that ( ) 0f x   for x in [0, 1].  Moreover, ( ) ln( ) 1f x x = +  for x > 0.  Hence, 

( ) 0f x = in (0, 1] if, and only if, 1x e−= .  Therefore,  ( ) 0f x   for  1(0, )x e−  and 

( ) 0f x   for  1( ,1]x e− .  Consequently, ( )f x  is decreasing on 1[0, ]e−  and 

increasing on 1[ ,1]e− .  Hence, the function f has an absolute minimum value of 
1e−−  on [0, 1] and a maximum value of 0 at 0 and 1.  Let ( )( ) f xg x e=  for [0,1]x . 

Then g(x) is a continuous function on [0, 1], since it is a composite of two 

continuous functions.  Thus, by xx for [0,1]x , we mean g(x).  Hence, xx is 

Riemann integrable on [0, 1] and 
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1( ) ( ) 1ee g x
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We can use the power series expansion of the exponential function to express 

g(x) too. 
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= +  for integer n ≥ 1.  Then ( )ng x  converges pointwise to 

g(x) on [0, 1]. 
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sequence of functions ( )( )ng x  is uniformly bounded on [0, 1].  Therefore, by the 

Arzelà's Dominated Convergence Theorem, 
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We may also invoke the fact that the series 
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convergent so that we can integrate the series term by term.  Note that for all x 

in [0, 1], 
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Weierstrass M test that 
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is Riemann integrable for all n ≥ 1, we can integrate g(x) 

term by term.   Next, we consider the integral ( )
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It follows that 1 2 1( 1) ! !k k kI kI k k I k I k− −= = − = = = .  Following (1) we get,  

                 ( )
1

1 10 0

1 !
( ) ( 1) ( 1)

( 1) ( 1)

k k u k k

k k

k
f x dx e u du

k k


−

+ +
= − = −

+ +  . 

Therefore,   

             
1 1 1 1

( )

10 0 0 0
1 0

( ( )) 1
( ) 1 ( 1)

! ( 1)

k
x f x k

k
k k

f x
x dx g x dx e dx dx

k k

 

+
= =

= = = + = −
+

     .    

Similarly,   
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This completes the derivation of the stated integrals. 

Indeed, if a function f(x) is Riemann integrable on the interval [a, b], then it is 

bounded on [a, b] and the function ( )f xe  is Riemann integrable on [a, b].  We 

may by the Arzelà's Dominated Convergence Theorem, integrate ( )f xe on [a, b] 

by term-by-term integration on the series expansion of ( )
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the series is uniformly bounded by Me  , where  max ( ) : [ , ]M f x x a b=  .  That is, 
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Using the same approach, we can show that 
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