Integrals of
$$x^{(x^n)}$$
 and $x^{-(x^n)}$ from 0 to 1
By Ng Tze Beng

The integral of the function x^x from 0 to 1 does not have a closed form. Likewise, the integral of the function x^{-x} from 0 to 1 does not have a closed form. They can be expressed as convergent series.

The function *x*^{*x*}

Observe that x^x is not defined at x = 0. For x > 0, we define x^x via the exponential function by $x^x = \exp(x \ln(x)) = e^{x \ln(x)}$. Now, using L'Hôpital's Rule, $\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x^2}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$. Define $f(x) = \begin{cases} x \ln(x), x > 0, \\ 0, x = 0 \end{cases}$ on the

closed interval [0, 1]. Then f is continuous on [0, 1].

Note that $f(x) \le 0$ for x in [0, 1]. Moreover, $f'(x) = \ln(x) + 1$ for x > 0. Hence, f'(x) = 0 in (0, 1] if, and only if, $x = e^{-1}$. Therefore, f'(x) < 0 for $x \in (0, e^{-1})$ and f'(x) > 0 for $x \in (e^{-1}, 1]$. Consequently, f(x) is decreasing on $[0, e^{-1}]$ and increasing on $[e^{-1}, 1]$. Hence, the function f has an absolute minimum value of $-e^{-1}$ on [0, 1] and a maximum value of 0 at 0 and 1. Let $g(x) = e^{f(x)}$ for $x \in [0, 1]$. Then g(x) is a continuous function on [0, 1], since it is a composite of two continuous functions. Thus, by x^x for $x \in [0, 1]$, we mean g(x). Hence, x^x is Riemann integrable on [0, 1] and $\int_0^1 x^x dx = \int_0^1 g(x) dx = \int_0^1 e^{f(x)} dx$. Note that $e^{(-e^{-1})} \le g(x) \le 1$ for $x \in [0, 1]$.

We can use the power series expansion of the exponential function to express g(x) too.

$$g(x) = 1 + \sum_{n=1}^{\infty} \frac{(f(x))^n}{n!}$$

Let $g_n(x) = 1 + \sum_{k=1}^n \frac{(f(x))^k}{k!}$ for integer $n \ge 1$. Then $g_n(x)$ converges pointwise to g(x) on [0, 1].

Moreover, $|g_n(x)| \le 1 + \sum_{k=1}^n \frac{(-f(x))^k}{k!} \le 1 + \sum_{k=1}^n \frac{(e^{-1})^k}{k!} \le 1 + \sum_{k=1}^\infty \frac{1}{k!} = e$. This means that the sequence of functions $(g_n(x))$ is uniformly bounded on [0, 1]. Therefore, by the Arzelà's Dominated Convergence Theorem,

$$\int_0^1 g_n(x) dx = 1 + \sum_{k=1}^n \int_0^1 \frac{(f(x))^k}{k!} dx \to \int_0^1 g(x) dx.$$

We may also invoke the fact that the series $1 + \sum_{n=1}^{\infty} \frac{(f(x))^n}{n!}$ is uniformly convergent so that we can integrate the series term by term. Note that for all xin $[0, 1], \left|\frac{(f(x))^n}{n!}\right| \le \frac{1}{n!}$ for n > 1 and $1 + \sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent. It follows by Weierstrass M test that $1 + \sum_{n=1}^{\infty} \frac{(f(x))^n}{n!}$ is uniformly convergent on [0, 1] to the function g. As $\frac{(f(x))^n}{n!}$ is Riemann integrable for all $n \ge 1$, we can integrate g(x)term by term. Next, we consider the integral $\int_0^1 (f(x))^k dx$.

The Integral $\int_0^1 (f(x))^k dx$.

We claim that $\int_0^1 (f(x))^k dx = (-1)^k \frac{k!}{(k+1)^{k+1}}$.

 $\int_{t}^{1} (f(x))^{k} dx = \int_{t}^{1} x^{k} (\ln(x))^{k} dx. \text{ Let } u = -(k+1)\ln(x). \text{ Then } x = e^{-\frac{1}{k+1}u} \text{ and}$ $\frac{du}{dx} = -(k+1)\frac{1}{x}. \text{ Thus, applying a change of variable, we get}$ $\int_{t}^{1} (f(x))^{k} dx = \int_{t}^{1} x^{k} (\ln(x))^{k} dx = -\int_{-(k+1)\ln(t)}^{0} e^{-u} (-1)^{k} \frac{1}{(k+1)^{k+1}} u^{k} du$ $= (-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{-(k+1)\ln(t)} e^{-u} u^{k} du.$ $\int_{0}^{1} (f(x))^{k} dx = \lim_{t \to 0^{+}} \int_{t}^{1} (f(x))^{k} dx = \lim_{t \to 0^{+}} (-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{-(k+1)\ln(t)} e^{-u} u^{k} du$ $= (-1)^{k} \frac{1}{(k+1)^{k+1}} \lim_{s \to \infty} \int_{0}^{s} e^{-u} u^{k} du = (-1)^{k} \frac{1}{(k+1)^{k+1}} \int_{0}^{\infty} e^{-u} u^{k} du .$ (1)

Now we claim that $I_k = \int_0^\infty e^{-u} u^k du = k!$.

Note that $I_1 = \int_0^\infty e^{-u} u du = \lim_{s \to \infty} \int_0^s e^{-u} u du = \lim_{s \to \infty} \left[-e^{-u} u \right]_0^s + \lim_{s \to \infty} \int_0^s e^{-u} du$ = $0 + \lim_{s \to \infty} \left[-e^{-u} \right]_0^s = 1$. For k > 1, $I_k = \int_0^\infty e^{-u} u^k du = \lim_{s \to \infty} \int_0^s e^{-u} u^k du = \lim_{s \to \infty} \left[-e^{-u} u^k \right]_0^s + \lim_{s \to \infty} k \int_0^s e^{-u} u^{k-1} du$

$$= -\lim_{s \to \infty} e^{-s} s + kI_{k-1} = 0 + kI_{k-1} = kI_{k-1} .$$

It follows that $I_k = kI_{k-1} = k(k-1)I_{k-2} = \dots = k!I_1 = k!$. Following (1) we get,

$$\int_0^1 (f(x))^k dx = (-1)^k \frac{1}{(k+1)^{k+1}} \int_0^\infty e^{-u} u^k du = (-1)^k \frac{k!}{(k+1)^{k+1}}.$$

Therefore,

$$\int_0^1 x^x dx = \int_0^1 g(x) dx = \int_0^1 e^{f(x)} dx = 1 + \sum_{k=1}^\infty \int_0^1 \frac{(f(x))^k}{k!} dx = \sum_{k=0}^\infty (-1)^k \frac{1}{(k+1)^{k+1}}.$$

Similarly,

$$\int_0^1 x^{-x} dx = \int_0^1 e^{-f(x)} dx = 1 + \sum_{k=1}^\infty \int_0^1 \frac{(-f(x))^k}{k!} dx = \sum_{k=0}^\infty \frac{1}{(k+1)^{k+1}}.$$

This completes the derivation of the stated integrals.

Indeed, if a function f(x) is Riemann integrable on the interval [a, b], then it is bounded on [a, b] and the function $e^{f(x)}$ is Riemann integrable on [a, b]. We may by the Arzelà's Dominated Convergence Theorem, integrate $e^{f(x)}$ on [a, b]by term-by-term integration on the series expansion of $e^{f(x)} = 1 + \sum_{n=1}^{\infty} \frac{(f(x))^n}{n!}$ since the series is uniformly bounded by e^M , where $M = \max\{|f(x)|: x \in [a,b]\}$. That is,

$$\int_{a}^{b} e^{f(x)} dx = \sum_{k=0}^{\infty} \int_{a}^{b} \frac{(f(x))^{k}}{k!} dx \, .$$

Using the same approach, we can show that $\int_0^1 x^{(x^n)} dx = \sum_{k=0}^\infty (-1)^k \frac{1}{(nk+1)^{k+1}}$ and

$$\int_0^1 x^{-(x^n)} dx = \sum_{k=0}^\infty \frac{1}{(nk+1)^{k+1}} \, .$$